Modeling the whole cell is a goal of modern systems biology. Current approaches are neither scalable nor flexible to model complex cellular functions.
buy kamagra online https://nouvita.co.uk/wp-content/languages/en/kamagra.html no prescription
They do not support collaborative development, are monolithic and, take a primarily manual approach of combining each biological pathway model’s software source code to build one large monolithic model that executes on a single computer. What is needed is a distributed collaborative engineering systems approach that offers massive scalability and flexibility, treating each part as a services-based component, potentially delivered by multiple suppliers, that can be dynamically integrated in real-time. A requirements specification for such a services-based architecture is presented. This specification is used to develop CytoSolve, a working prototype that implements the services-based architecture enabling dynamic and collaborative integration of an ensemble of biological pathway models, that may be developed and maintained by teams distributed globally.