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By Leslie Mertz

Creating Accurate Models of Life
The ultimate test of understanding a simple cell, more than being able to 
build one, would be to build a computer model of the cell, because that 
really requires understanding at a deeper level.
	 —Clyde A. Hutchinson III, professor emeritus of 

microbiology and immunology at The University of North 
Carolina at Chapel Hill and distinguished investigator 

at the J. Craig Venter Institute, Rockville, Maryland [1]

ardly a day goes by that I don’t think about that 
quote. It’s an obsession,” said Markus Covert, Ph.D., 
assistant professor of the Department of Bioengi-
neering at Stanford University, California. Covert 
led the effort that, in July 2012, reported its con-
struction of the first complete computer model of 

an organism (Figures 1 and 2). That effort, along with other 
recently announced computer models, is providing a never-
before-seen view of 
life in all of its intri-
cacy and complexity. 
Through these models, 
researchers are begin-
ning to learn exactly 
what is going on within and between cells to divulge the 
mysteries of cancer and other insidious diseases and to under-
stand how to stay on top of antibiotic-resistant bacteria (see 
“Computer Models Poised to Revolutionize Medical Care”).

In addition, these models are being used not only to identify 
new drugs and drug combinations but also to greatly expedite 
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their development. ”In my opinion, computational systems biol-
ogy, including multiscale modeling, will be at the forefront of 
the transformation of medicine, a process that has just begun,” 
commented Aleksander S. Popel, Ph.D., professor of biomedical 
engineering with a joint appointment as professor of oncology 
at The Johns Hopkins University School of Medicine, Baltimore, 
Maryland.

Why We Need a Computer Model
One of the primary reasons computer modeling is important to 
systems biology is the sheer volume of information that is already 
out there. Even a cursory glance at the scientific literature reveals 
that researchers already know the minutiae of thousands of 
molecular pathways and proteins that together comprise living 
organisms. Additional details are coming at breakneck speed 
thanks to new automated methods, such as high-throughput 
gene phenotyping, which determines the role of each gene by 
inactivating (knocking out) one after another to see what hap-
pens to the organism.

At the same time, the glut of information poses a prob-
lem. Those many pathways and proteins play into and off of 
one another as an organism goes about its daily business and 
figuring out that elaborate and convoluted molecular dance is 
complicated to say the least. This is where computer model-
ing becomes necessary, said Popel. “The human mind cannot 
absorb beyond certain limits and cannot integrate this complex 
information beyond some simple relationships. Computer mod-
eling is absolutely key and absolutely necessary to interpret all 
of this information.”

Research teams have certainly taken a stab at the problem 
by generating mathematical equations and computational source 
codes that correspond to separate pathways and then combin-
ing the multiple source codes, explained VA Shiva Ayyadurai, 
Ph.D., when discussing his motivation for creating the computer-
modeling start-up company CytoSolve, located in Cambridge, 
Massachusetts. VA Shiva is the founder, president, and CEO of 
CytoSolve, as well as a systems scientist who teaches systems 
visualization at the Massachusetts Institute of Technology 
(MIT), Cambridge. The approach he described worked only to 
a point. “People were maybe getting to 20 or 30 equations to 
describe a biological process, and then it would just become too 
hard to manage, so they would leave 
it,” he said.

Still, the need was there. In 2006, 
the National Science Foundation put 
forth a grand challenge in systems biol-
ogy to generate a computer model of 
a whole cell that included its myriad 
genes and proteins, all of the meta-
bolic and signaling pathways, and each 
of the stages from replication to aging 
and death, plus disease and disease 
recovery. Such a model would coalesce 
what scientists have already discov-
ered and show how it all fits together. 
From an applications standpoint, it 
could give researchers a potent tool for 

comprehending disease on a deeper and more complete level and 
for developing new drug therapies.

From “Can’t Be Done” to “Done”
Most researchers said it couldn’t be done; there was simply no way 
to generate an accurate computer model of the enormous range of 
complex interactions occurring within a cell. Some even bandied 
about the tongue-in-cheek-name “ridiculome” to describe the 
ridiculously huge mountain of data that must not only contribute 
to but also be correctly simulated by such a computer model.

“The ridiculome is basically a way of compensating for the 
fact that we aren’t truly understanding anymore what the results 
of our experiments are—they’re too complicated,” said Covert. 
“And that’s exactly why computer models are so powerful; these 
models can help you interpret your data sets.”

Then, in  July 2012, Covert’s research group at Stanford Uni-
versity announced that it had created the first complete com-
puter model of an organism, the bacterium Mycoplasma genitalium 
(M. genitalium). The Stanford model accounts for every molecular 

FIGURE 2  Markus Covert. (Photo courtesy of Steve Fisch.)

FIGURE 1  The first complete computer model of an organism, the 
bacterium M. genitalium, generated by the Stanford University 
team led by Markus Covert. The model accounts for every 
molecular interaction that takes place in the cell’s life cycle. 
(Image courtesy of Erik Jacobsen, Threestory Studio, Inc., Palo 
Alto, California.)
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Computer Models Poised to Revolutionize Medical Care
Not too long from now, that drug your doctor prescribes may have its 
roots in a computer model. This is because numerous research groups 
around the world are developing computer models of different 
biological processes, including diseases and other health issues, and 
using these models to identify new drugs and drug combinations.

Examples of this work include models of angiogenesis and 
antibiotic action. Researchers have identified peptides that interrupt 
angiogenesis, the formation of blood vessels that allow cancerous 
tumors to grow and spread and ultimately, may lead to vision loss in 
age-related macular degeneration. Researchers have also 
discovered a small molecule that can increase the effectiveness of 
antibiotics up to 1,000-fold.

Modeling Angiogenesis
Aleksander Popel’s research group (Popel is a professor of 
biomedical engineering with a joint appointment as professor of 
oncology at the Johns Hopkins University School of Medicine) 
created a computer model of angiogenesis to learn more about the 
process and to assist in computer-aided drug discovery (Figures S1 
and S2). The group pored through the scientific literature, used 
different techniques to pull together molecular and cellular disease 
information on angiogenesis, and extracted the information in the 
form of mathematical submodels.

To generate the computational model of that mass of information, 
his group combined two techniques. One is data-driven bioinformatics, 
which establishes statistical relationships between molecular changes 
(such as gene mutations or gene expression) and phenotypic changes 
(such as cell behavior and disease processes). The second is 
knowledge-based mechanistic computational modeling, which draws 

on experimental information about biochemical reactions, signaling 
networks, tissue geometry, and transport processes, and recasts this 
information using mathematical and computational tools. 

Other research groups are also beginning to combine the two 
techniques in their modeling efforts, Popel said. “Until recently, the 
development of data-driven and knowledge-driven models had 
proceeded in parallel, without much interaction between them. We 
now have begun to see the important convergence between the 
two fields of modeling.”

For the angiogenesis model, Popel’s group explicitly represented a 
wide range of molecular entities, including growth factors, matrix 
metalloproteinases (zinc- or calcium-dependent enzymes), and 
receptors. “And as we go up the scale from molecules to cells to tissues, 
we preserve all of the molecular information in the model.” Such 
multiscale models are important because angiogenesis, as well as other 
biological processes and systems, function at and have consequences at 
various levels [S1]. “Multiscale modeling of complex biological systems 
is at the core of modern computational modeling,” he noted.

Through the angiogenesis bioinformatics-based model, Popel’s 
group has already identified a number of peptides that interrupt 
angiogenesis [S2]. His lab is currently testing these peptides, which are 
mimetic and, therefore, do not occur in nature, in animal models. “We 
are now optimizing these peptides for therapeutic applications in 
both cancer and in age-related macular degeneration,” he said.

Modeling Antibiotic Resistance
A research group at Boston University (BU), Massachusetts, is also 
using computational modeling to develop drugs, but its focus is on 
antibiotics.
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FIGURE S1  Computer modeling used by Popel and his research group to identify molecules that interrupt angiogenesis, or the 
formation of blood vessels. Angiogenesis is important in cancer research because these new blood vessels can support cancer-
ous tumors, causing them to grow and spread. In this three-compartment model, Popel and his group illustrate how the angio-
genesis-stimulating protein called vascular endothelial growth factor (VEGF) is transported between normal tissue, blood, and 
tumors. Here, VEGF is neutralized with an anti-VEGF therapeutic macromolecule. The image shows VEGF isoforms VEGF121 and 
VEGF165, which are secreted by normal cells (e.g., skeletal muscle myocytes), cancer cells, and endothelial cells; VEGF receptors 
(VEGFR1 and VEGFR2) and coreceptors neuropilin-1/2 (NRP), which are localized on parenchymal and endothelial cells; soluble 
VEGFR1 and glycosaminoglycan (GAG) chains, which are present in the interstitial space; and alpha-2-macroglobulin (a2M), 
which is present in the blood. Molecular species are transported between compartments via microvascular permeability (kP) 
and lymphatic drainage (kL). Unbound VEGF in the tissue compartments is subject to proteolytic degradation and is removed 
from the blood via plasma clearance (cV). (Image courtesy of Aleksander S. Popel.)
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”We’re very interested in enhancing our antibiotic arsenal 
because the number of resistant strains in our communities and in 
our hospitals is growing, while the number of antibiotics being 
developed and approved is diminishing,” said James Collins, Ph.D., 
professor of biomedical engineering at BU and investigator for 
Howard Hughes Medical Institute (Figure S3).

Their work actually goes back to 2007 when they published their 
findings on the mechanism behind bactericidal antibiotics [S3]. “In 
doing this bioinformatics and computer-based work, we discovered 
that bactericidal antibiotics, that is, antibiotics that kill bacteria, act 
in part via a common mechanism that involves the generation of 
reactive oxygen species (chemically reactive molecules containing 
oxygen) in the bacteria.” When given at high enough dosage, the 
antibiotics trigger the production of sufficient reactive oxygen 
species (ROS) to kill all the bacteria. At lower doses, however, some 
bacteria are able to survive the less-severe ROS onslaught, and these 
bacteria and their progeny become antibiotic resistant.

The research group built on these findings, and, in a February 
2013 paper [S4], described how they used computer modeling to 
figure out how to promote ROS production in bacteria, specifically 
Escherichia coli (E. coli). “We constructed a computer-based model of 
the metabolic network of E. coli and analyzed the different genes in 
E. coli to see which ones, when inhibited, would boost the natural 
levels of reactive oxygen species in the bacteria,” Collins said 
(Figure S4).

Their model was based on work pioneered by bioengineer 
Bernhard  Palsson of the University of California, San Diego, and 
other groups, Collins said. “I think what makes our approach 
unique is that we extended these models by including several 

FIGURE S2  Graphic representation of the network of interactions between angiogenesis-associated proteins. Larger nodes (the 
red circles) indicate higher betweenness centrality, or greater interaction with other proteins and heightened importance to 
the network overall. Information like this is important for the generation of computer models of angiogenesis as well as the 
development of antiangiogenesis therapies. Popel uses computer models to identify molecules that might be used to improve 
antiangiogenic therapies. (Image courtesy of Aleksander S. Popel.)

FIGURE S3  Photo of James Collins. He and his research group 
hope to use computer modeling to further antibiotic devel-
opment. (Photo courtesy of Robert E. Klein/AP, HHMI.)
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hundred additional reactions to account for possible reactions that 
could produce reactive oxygen species.” In addition, his research 
group took the idea of one of its members, Mark Brynildsen, 
postdoctoral researcher (now assistant professor of chemical 
engineering at Princeton University, New Jersey), and extended 
Palsson’s models to not only conduct infectious-disease research 
but also to identify targets that could enhance the killing actions 
of antibiotics.

By following up with laboratory experiments, Collins and his 
research group showed that their validated targets could enhance 
the killing efficacy of antibacterials ten- to 1,000-fold. They also used 
their findings to identify a small molecule that inhibited one of the 
predicted, validated target genes. When administered in 
combination with an antibiotic, that small molecule (which was just 
for proof-of-principle demonstrations) improved the killing efficacy 
ten- to 100-fold. “In principle, with a small molecule that acts as 
such, you could take a lower concentration of antibiotics but 
achieve similar levels of killing,” Collins said. From a patient 
standpoint, that means a lower dose of an antibiotic and fewer 
potential side effects.

Collins’ research team, which includes about 30 undergraduate 
students, graduate students, and postdocs, is extremely pleased 
with the results they have achieved so far, especially in applications 
for improving health care, Collins said. “It’s very motivating. Young 
people today are particularly driven by context, so they can see why 
they’re doing what they’re doing and that they can make 
a difference.”

Future of Computational Modeling
The contributions and potential of computational systems biology, 
including multiscale modeling, are just emerging and “will be in the 
forefront of the transformation of medicine,” Popel said.

He noted, “Computational modeling of biological systems is 
making real headway in the United States and around the world. 
Important discoveries are being made using computational 
modeling. Modeling is used in designing new therapeutics, and 
new biocomputational tools are being developed.” One measure 
of this quickly advancing field is the growing number of 
computational-biology publications in major biological and 
general science journals as well as the creation of new journals 
devoted to computational modeling, Popel explained. At 
universities, too, students are flocking to computational biology 
programs.

The excitement is deserved. Popel remarked, “The field is young 
and quickly developing, and its full potential is yet to be explored. 
We are still at the beginning of the road.”
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FIGURE S4  A computer-based model of the metabolic network of the bacterium E. coli. Collins and his research group constructed 
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interaction that takes place in the cell’s life cycle (Figure 3). 
Combined with additional recent advances in computational 
biology, Covert’s work represents a turning point in computer 
modeling of biological systems.

The speeds at which new advances in computer modeling are 
occurring have surprised many scientists, including Covert. “If you 
would have asked me even five or six years ago when we would be 
able to model a whole cell, I would have said, ‘not for decades.’ Yet, 
here we are.” 

How did this happen? How are researchers today generat-
ing computer models that were thought impossible just a few 
years ago? A good part of the answer lies in new computational 
approaches.

Channeling the Information
Computer models of biological systems require the compila-
tion of information gleaned from scientific literature; since so 
much data exists, gleaning takes time. “Basically, three of us 
went through about a thousand papers by hand, reading them, 
talking about them, and trying to extract data in order to 
understand the organism better,” said Covert about his group’s 
model of M. genitalium (Figure 4).

It is not enough to just collect the information. To make it 
useful, it has to be combined, compared, overlaid, and inter-
related to generate a true simulation of life. Covert’s group 
approached the task with an overarching recognition. “We 
realized that no single mathematical method is sufficient to 
model a cell; because all the properties are so different, our 
understanding of each of them is so different, and the data 
that’s associated with them is different,” he said.

So, rather than bending the heterogeneous data to suit one 
method, Covert’s group selected various methods that were good 
fits for the diverse modules and their data sets, and integrated the 
different methods. “We broke the cell’s functionality into 28 mod-
ules (Figure 5), such as metabolism and transcriptional regulation, 
and then asked: What is the best way to reproduce this? What’s the 
data that’s out there? What would we expect to be modeling, and 
what would that look like? Is the data largely qualitative or quan-
titative? Based on that, we just chose the best methods,” he said.

The next job was to bring those molecular-pathway mod-
els, or submodels, together into one large working computer 
model. “That was what I would call the hard part,” Covert said.

He and his team recognized full well that the 28 cell-
functionality modules were “very interdependent and integrated,” 
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but for their purposes, they made 
the assumption that for a tiny 
enough period of time, the mod-
ules each acted independently.  
For example, one module may 
produce certain compounds that 
affect a second module. That 
second module may produce 
different compounds that, in 
turn, affect the first module as 
well as a third module. Instead 
of constantly trying to capture 
all of those inputs and outputs, 
Covert’s model accounts for 
those changing inputs and out-
puts at one-second intervals and 
only at those intervals, and in 
the meantime, each simulation 
runs independently. “The gen-
eral idea is that we just run each 
module individually, yet they’re 
all dependent on the results of 
the previous time step and they 
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(Images courtesy of Erik Jacobsen, Threestory Studio, Inc., and Bernhard André, Bernhard André 
Photography, San Francisco, California.)
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all contribute to the results of the next time step 
independently,” he explained.

This approach allowed the Stanford research-
ers to coalesce all of the disparate information 
about M. genitalium into a working model of the 
organism.

On-the-Fly Scalability
The start-up company CytoSolve focuses on dis-
eases instead of whole-cell modeling, but, like 
Covert’s group, it relies on a meticulous review 
of scientific literature to draw together sub-
models that define various molecular pathways. 
“Right now, we have about 1,500 submodels 
that we’ve taken from or generated from public-
domain, peer-reviewed research papers,” said VA Shiva. Using 
the technology he invented as a core part of his research at MIT, 
he founded CytoSolve in 2011 and recruited his former advisor 
C. Forbes Dewey Jr., Ph.D., professor of mechanical and biologi-
cal engineering at MIT.

“In 2003, I came back to MIT after working in building large-
scale enterprise class systems for Global 2000 companies,” VA 
Shiva said. “I realized that computational systems biologists 
needed a similar enterprise class platform to model the whole 
cell, and without such an enterprise systems approach, whole-
cell modeling would always be a Holy Grail.”

CytoSolve’s researchers brought their backgrounds in 
distributed computing to the problem of coalescing the 
submodels and developed what it calls “the world’s first compu-
tational platform for scalable integration of molecular-pathway 
models” [3].

“I think the advantage we had was that I and some of our 
team members had experience working for big organizations 
where you have to integrate large-scale computing systems 
that have underlying, constantly changing parts,” VA Shiva said. 
“For example, a large company like CitiGroup has a financial 
system, a human-resources system, 
perhaps a sales-force system, a cus-
tomer-database system, and those 
systems—which typically each have 
their own native file formats—all 
have to be integrated. On top of that, 
the data in each system is constantly 
being updated. You do that not by 
merging them into a monolithic code 
base, or into one singular system, but 
by creating a tiered architecture, a 
layer on top of the distributed models, 
that integrates these models on the 
fly while allowing them to be kept in 
their native formats,” he said.

The same holds true in biology. 
Each research group does its work and 
presents its data in its own way. The 
resulting submodels are different, and 
they can change as new research is 
published, VA Shiva said. “If the rug is 

constantly being moved from beneath you, how 
do you handle that? Well, you have to have a 
distributed computational approach. Otherwise, 
you cannot scale to build any meaningful models 
and, more importantly, one cannot maintain the 
larger model since the rug is being pulled out all 
the time.”

Many other computational modeling plat-
forms require the various languages of the 
submodels—such as Matrix Laboratory (MAT-
LAB), Systems Biology Markup Language 
(SBML), and Fortran—to be translated into 
one base language before they are aggregated 
into the overall model. “The problem with 
this approach is that a researcher may publish 

a new paper, which changes the rate constants, adds a new 
species (such as a protein), or otherwise alters the submodel. 
That means you have got to go back, download that paper 
again, and recode it up,” VA Shiva said. “That’s not going to 
scale if you’ve got another 20 pathways that are part of that 
computer model.”

The CytoSolve platform solves that problem, because it not 
only integrates submodels in their native languages but also 
allows for changing information, VA Shiva said (Figures 6 and 7). 
“The submodels are like little jigsaw pieces that can change in 
real time as new information comes in, and CytoSolve is like the 
engine in the sky that lets you put the jigsaw puzzle together for 
different diseases. And if new information is published, it auto-
matically integrates that in,” he explained. ”Otherwise, it’s too 
complex of a problem. You can’t do it.”

Drug Development
CytoSolve is using its platform to identify and introduce 
new drug therapies (Figure 8). Compared with traditional 
drug-development practices that take about four years to go 
through laboratory, animal, and human testing, VA Shiva said, 
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FIGURE 6  (a) Molecular pathway converted into (b) a molecular pathway model. The model 
receives inputs (SM,n) and evaluates outputs (SM,n+1). The model may be encoded in 
different programming languages and may utilize various mathematical approaches. 
(Image courtesy of VA Shiva Ayyadurai.)

“What’s fascinating 
about that is we’re 
going from in silico 
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work.”
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CytoSolve’s modeling platform can bypass much of the prelimi-
nary testing and go straight to human trials in less than a year. 
Apart from time, this saves considerable money.

As the company moves forward, it will develop its own 
multicombination drug therapies and will license its computer-
modeling platform to large pharmaceutical companies so they 
can use it to identify new drug therapies, especially drug com-
binations, VA Shiva said. “Right now, there are about 360 drug 
combinations out there that have been approved, and out of 
those, most are two-drug combinations. Only 15 are three-
drug combinations, and just one is a combination of four.” 
The reason for the low numbers of multidrug combinations is 
that each of the drugs can affect multiple molecular pathways, 
and the geometric progression of the interactions spiral out 
of control when the number reaches three, four, or more, he 
said. “With CytoSolve, we can combine not just two drugs, but 
seven, eight, or nine. And what’s especially attractive about 
drug combinations is that you can reduce the dosage of each 
drug, which means we can lessen potential toxicity.”

Pharmaceutical companies that license the CytoSolve plat-
form can point it at a disease of choice, let the system screen 
various combinations of generic and soon-to-be generic drugs, 

and spit out a marketable combination, VA Shiva said. In addi-
tion, the companies can contribute their own submodels to 
the CytoSolve database without revealing proprietary infor-
mation. “We’ve done it in such a way that public models can 
be integrated with private models,” he said. “A pharmaceutical 
company may not want to share the guts of their model—their 
rate constants or software codes—but they may want to share 
the inputs and the outputs in order to integrate with public 
models and engage in collaborative learning. This kind of 
opacity is possible with the platform,” he said.

To prove the viability of its model, researchers at CytoSolve 
used it to identify a drug therapy. “We’ve taken the disease 
pancreatic cancer, found all of the pathways that were writ-
ten on it in the scientific literature, and modeled it. From 
that model, we’ve actually found some combinatorial drugs 
for pancreatic cancer and are about to go to our first inves-
tigational-new-drug (IND) filing,” he said. Once filed, the 
drug will undergo U.S. Food and Drug Administration (FDA) 
review, and if it gets the green light, the drug will proceed to 
Phase 1 clinical trials.

“What’s fascinating about that is we’re going from in silico 
modeling all the way to IND filing in 11 months, compared to 

Pathways: Abstract representation of
D biological pathways that compose the 
whole cell.

Models: Each black box is a mathematical
representation of one D model. Each 
model, developed by a different research 
team, resides on a different computer. 
We assume each model is accessible 
over the Internet.

System: CytoSolve aims to integrate the
solutions of all models in parallel.
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FIGURE 7  CytoSolve’s approach involves viewing the cell as a collection of pathways, each represented as a dynamic model. The 
CytoSolve platform can couple and integrate those models. (Image courtesy of VA Shiva Ayyadurai.)



march/april  2013  ▼  ieee pulse  25

the four years that’s typical for tradi-
tional drug-development work,” VA 
Shiva said. “This shows that we can 
do the in silico testing, avoid a lot 
of the animal cell testing that takes 
time and money to do, and go right 
to human testing. That’s possible 
because our model allows us to vali-
date everything, and we can do that 
because the model comes from peer-
reviewed papers, and each one of 
those papers is based on in vitro and 
in vivo testing.” He added, “More-
over, experts have shared with us 
that the FDA will actually find our 
in silico data valuable in making 
their IND application assessments.”

The company has created both 
the business methodology and the 
computational and scientific meth-
odology, he said. It’s also contrib-
uting its own information to the 
research pool. “Whenever we cre-
ate a submodel, perhaps a submodel 
on some aspect of diabetes or what-
ever, we provide it to a public reposi-
tory. That’s how we give back to the 
research community.”

From Bacterium to Human-Cell Models?
Although recent contributions to computer modeling of biologi-
cal systems have catapulted the field forward over the last year, 
plenty of work remains to be done.

Stanford’s work in modeling an organism is a good example. 
“There are definitely things that are beyond the scope of the 
model,” Covert said. While his research group pinpointed the 
exact location of every protein that binds to the chromosome, 
they didn’t explicitly model the position of every atom and mol-
ecule in the entire cell. “This is not a molecular-dynamics type of 
simulation,” he said. In addition, the model presents a somewhat 
narrow view in that it focuses on one single cell and one cell 
cycle. “We didn’t model the interactions between cells.”

To make the leap to an organism with a larger genome, such 
as the intestinal bacterium E. coli or even a human cell, the model 
would require considerable modification. “You’d think it would 
be relatively similar, but it actually turns out that there are a lot 
of new functionalities that we would need to include, and there 
would be many conceptual leaps that would have to be made to 
go up to E. coli and eventually to human cells,” Covert said. “Still, 
I think this is a great start.”

His group’s work, and that of others, has provided needed 
motivation. “Even five years ago when I was talking about a 
computer model of an organism, people weren’t really buying 
it,” he said with a chuckle. Publishing their model of an organism 
has helped change that. “Even though doing a human cell will 
be much harder, I know for a fact that there’s already talk about 
it. I’m very hopeful that people will be coming into our field now 

and working with us or working in friendly competition with us 
to build these models.”

Computer modeling can go even further, VA Shiva said. 
“Systems biology is a very experimentally focused field. It’s not 
like in physics where we have ab initio or engineering laws from 
which we can derive things. With computer modeling, however, 
we can bring together all of this information we have amassed 
and potentially lead to some laws that will unify biology.”

Popel added, “The computer revolution has certainly occurred 
in other fields of science and engineering, and now it is occur-
ring in biology and medicine. It’s tremendously exciting and very 
remarkable that it occurs in our time.”

Leslie Mertz (lmertz@nasw.org) is a freelance science, medical, and 
technical writer, author, and educator living in northern Michigan.
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